Article Abstract

Title:	Bioeconomic modelling of a prey predator system using differential algebraic
	equations
Author(s):	T. K. Kar ^{a*} and Kunal Chakraborty ^b
Address(es):	^a Department of Mathematics, Bengal Engineering and Science University, Shibpur,
	Howrah-711103
	^b Department of Mathematics, MCKV Institute of Engineering, 243 G.T.Road (N),
	Liluah, Howrah-711204
	E-mails:(tkar1117@gmail.com (T. K. Kar), *Corresponding author);
	kc_mckv@yahoo.co.in (Kunal Chakraborty)
Journal:	International Journal of Engineering, Science and Technology, Vol. 2, No. 1, 2010,
	pp. 13-34.
Abstract:	We propose a biological economic model based on prey-predator dynamics where
	the prey species are continuously harvested and predation is considered with type II
	functional response. The dynamic behavior of the proposed biological economic
	prey-predator model is discussed. Continuous type gestational delay of predators is
	incorporated and its effect on the dynamical behavior of the model system is
	analyzed. Through considering delay as a bifurcation parameter, the occurrence of
	Hopf bifurcation of the proposed model system with positive economic profit is
	shown in the neighborhood of the co-existing equilibrium point. Finally, some
	numerical simulations are given to verify the analytical results and the system is
	analyzed through graphical illustrations.
Keywords:	Bioeconomics, differential algebraic system, time delay, Hopf bifurcation