Article Abstract

Title:	Characterization of γ - and α -Fe ₂ O ₃ nano powders synthesized by emulsion
	precipitation-calcination route and rheological behaviour of α-Fe ₂ O ₃
Author(s):	S.K. Sahoo ^{1,*} , K. Agarwal ² , A.K. Singh ³ , B.G. Polke ¹ and K.C. Raha ¹
Address(es):	¹ High Energy Materials Research Laboratory, Pune-21, INDIA
	² Defence Materials and Stores Research and Development Establishment, Kanpur-
	208013, INDIA
	³ Defence Institute of Advanced Technology, Pune-411025, INDIA
	* Corresponding author: email- saroj_sahu1@rediffmail.com
Journal:	International Journal of Engineering, Science and Technology, Vol. 2, No. 8, 2010,
	рр. 118-126.
Abstract:	Nano crystals of γ -Fe ₂ O ₃ (maghemite) were synthesized by emulsion precipitation
	method using kerosene as oil phase, SPAN-80 (sorbitane monooleate) as the
	surfactant and sodium hydroxide as the precipitating agent. The characterization of
	the samples by FTIR (Fourier transform infra-red) and XRD (X-ray diffraction)
	techniques confirmed the formation of γ -Fe ₂ O ₃ (maghemite). Analysis by SEM
	(scanning electron microscope) and TEM (transmission electron microscope) was
	carried out to study the morphology and particle size. The as prepared samples
	contained inverse spinel cubic phase maghemite. Effect of initial iron concentration
	on crystallite size of maghemite showed that it decreased with the decrease in initial
	iron concentration. Transformation of γ -Fe ₂ O ₃ to α -Fe ₂ O ₃ (hematite) was studied by
	calcining the precursor in the temperature range of 500 to 850°C.
	Formation/transformation of phases at different temperatures was confirmed by
	FTIR and XRD studies. Images, obtained by SEM and TEM showed the
	morphology and nanocrystal formation of hematite. Room temperature rheological
	behaviour of the synthesized α -Fe ₂ O ₃ nano powder has been studied.
Keywords:	Iron oxide, emulsion, nanocrstals, crystal growth, rheological property