Article Abstract

Title:	Oxidation and thermal behavior of Jatropha curcas biodiesel influenced by
	antioxidants and metal contaminants
Author(s):	Siddharth Jain ^{1*} , M.P. Sharma ²
Address(es):	^{1, 2} Biofuel Research Laboratory, Alternate Hydro Energy Centre, Indian Institute of
	Technology Roorkee, Roorkee, Uttarakhand- 247667, INDIA
	*Corresponding Author: e- mail: arthjain2001@gmail.com, Tel.: +91 9456382050;
	Fax: +91 1332 273517
Journal:	International Journal of Engineering, Science and Technology, Vol. 3, No. 4, 2011,
	pp. 65-75.
Abstract:	According to European biodiesel standard EN-14214 the minimum requirement of
	oxidation stability in terms of induction period is 6 hr by the Rancimat method (EN-
	14112). The induction period of fresh Jatropha curcas biodiesel (JCB) is 3.27 hr.
	Also the thermal stability of JCB is very poor in terms of activation energy (Ea) and
	frequency factor (f). The thermal and oxidation behavior is also affected adversely
	by the container metal. The present paper is dealing with the study of oxidation and
	thermal behavior of JCB with respect to different metal contents. It was found that
	influence of metal was detrimental to thermal and oxidation stability. Even small
	concentrations of metal contaminants showed nearly same influence on oxidation
	stability as large amounts. Copper (Cu) showed strongest detrimental effect on both,
	oxidation and thermal stability. Relative effectiveness of different antioxidants were
	also checked and found that pyrogallol (PY) is the most effective one. The effect of
	PY is studied in metal contaminated JCB to see the oxidation and thermal stability.
Keywords:	Jatropha curcas biodiesel (JCB), thermal stability, rancimat, TGA, activation energy,
	methyl ester (ME), metal contaminate.