Article Abstract

Title:	Optimization of surface roughness in CNC end milling using response surface
	methodology and genetic algorithm
Author(s):	B. Sidda Reddy ^{1,*} , J. Suresh Kumar ² and K. Vijaya Kumar Reddy ³
Address(es):	¹ R.G.M. College of Engineering & Technology, Nandyal, A.P, INDIA
	^{2,3,} J.N.T.U.H. College of Engineering, Kukatpally, Hyderabad, A.P, INDIA
	*Corresponding Author: e-mail: sidhareddy548[AT]gmail.com, Tel +91-
	9440844600
Journal:	International Journal of Engineering, Science and Technology, Vol. 3, No. 8, 2011,
	pp. 102-109.
Abstract:	Pre-hardened steel (P20) is a widely used material in the production of moulds/dies
	due to less wear resistance and used for large components. In this study,
	minimization of surface roughness has been investigated by integrating design of
	experiment method, Response surface methodology (RSM) and genetic algorithm.
	To achieve the minimum surface roughness optimal conditions are determined. The
	experiments were conducted using Taguchi's L ₅₀ orthogonal array in the design of
	experiments (DOE) by considering the machining parameters such as Nose radius
	(R), Cutting speed (V), feed (f), axial depth of cut (d) and radial depth of cut(rd). A
	predictive response surface model for surface roughness is developed using RSM.
	The response surface (RS) model is interfaced with the genetic algorithm (GA) to
	find the optimum machining parameter values.
Keywords:	Pre-hardened steel, DOE, Orthogonal array, RSM, GA.